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We analyze the structure of networks minimizing the global resistance to flow �or dissipative energy� with
respect to two different constraints: fixed total channel volume and fixed total channel surface area. First, we
show that channels must be straight and have uniform cross-sectional areas in such optimal networks. We then
establish a relation between the cross-sectional areas of adjoining channels at each junction. Indeed, this
relation is a generalization of Murray’s law, originally established in the context of local optimization. We
establish a relation too between angles and cross-sectional areas of adjoining channels at each junction, which
can be represented as a vectorial force balance equation, where the force weight depends on the channel
cross-sectional area. A scaling law between the minimal resistance value and the total volume or surface area
value is also derived from the analysis. Furthermore, we show that no more than three or four channels meet
at each junction of optimal bidimensional networks, depending on the flow profile �e.g., Poiseuille-like or
pluglike� and the considered constraint �fixed volume or surface area�. In particular, we show that sources are
directly connected to wells, without intermediate junctions, for minimal resistance networks preserving the
total channel volume in case of plug flow regime. Finally, all these results are compared with the structure of
natural networks.
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I. INTRODUCTION

Networked structures arise in a wide array of different
contexts such as water, gas, and power supply of a city, vas-
cular systems of plants and animals, or river basins �1–3�.
Thus, optimization of transport in networks has evident in-
dustrial and economical importance, but may also shed light
on the structure of natural networked structures. Indeed, the
analysis of these structures from optimization and selection
principles has recently been the subject of intense scientific
activity �4–8� and controversy �9–11�. Besides, theoretical
models—based on local optimization �i.e., optimization of
the geometry of a single junction�—have been attempted to
explain in detail the regular patterns of vascular networks
�12–15�. However, it is generally known that as the global
optimum is achieved, the local optimum of a single junction
is often discarded. In the present paper, we characterize the
structure of networks satisfying to the global optimization
of transport. For the class of networks mentioned here, the
Euclidean metric must be taken account, and the optimiza-
tion must be achieved with respect to some geometrical
constraint.

Precisely, the problem we raise can be expressed as fol-
lows: Consider s sources at the same potential �electrical
potential, pressure, concentration, temperature,…� VS and w
wells at the same potential VW, their respective positions be-
ing fixed. What is the architecture of the network linking all
the sources to all the wells and minimizing the effective re-
sistance �or dissipated energy� for a fixed total channel vol-
ume or fixed total channel surface area �16�? Or equivalently,
which architecture minimizes the total channel volume or
surface area for a same value of the global resistance? We
must point out that this problem clearly differs from the op-
timization of macroscopic transport through homogeneous
networks, which was subject to previous studies �17,18�. The

macroscopic transport properties of a homogeneous network
were described by a conductivity tensor �as for any effective
continuous medium�, and the network architecture maximiz-
ing the average conductivity �i.e., the conductivity averaged
on all directions� was analyzed. Therefore, optimization in
that case was done independently of the positions of sources
and wells. On the contrary, it is to be expected that the struc-
ture of the minimal resistance network will change with the
positions of sources and wells �indeed, this fact will be illus-
trated with a simple example in the Appendix�. Note, how-
ever, that in both cases, we do not need to make any assump-
tion on the reticulation of the network: both treelike and
nettedlike �i.e., containing loops� networks are considered.

In the following, we shall often refer to the electrical cir-
cuit terminology, although this study obviously concerns any
linear flow-in-network situation. Let us denote each pipe by
a pair of indices �i , j� corresponding to the labels of its two
ends. We suppose a priori that pipes can be curved, but we
assume that their aspect ratios are sufficiently high so a
length lij and a local cross-sectional area sij�l� �where l de-
notes the curvilinear coordinate along a channel� can be un-
equivocally defined for each pipe �i , j�. The resistance drij of
an infinitesimal piece of pipe of length dl is then defined as

drij =
�

sij
mdl , �1�

where � is the “resistivity”, which is supposed to be the same
for all the pipes. For m=1, the flow in each channel is plug-
like �e.g., electric current in metallic wire, liquid flow in
porous conduct,…�, while for m=2, the flow is Poiseuille-
like �e.g., laminar viscous flow in pipe�. Assuming there is
no leakage through the channel lateral surface, the resistance
of the whole channel �i , j� is
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rij = �
0

lij �

sij
mdl . �2�

Since we shall inspect the minimal resistance configuration
with respect with two different constraints �a fixed total
channel volume Vtot and a fixed total surface-area channel
Stot�, we introduce for simplicity the “constraint function”

Cn = �
�i,j�
�

0

lij

sij
n dl , �3�

so that C1=Vtot, and C1/2�Stot.

II. COHN’S THEOREM

To characterize the architecture of minimal resistance net-
works, we shall invoke Cohn’s theorem, originally developed
in the context of electrical circuit analysis �19,20�: consider a
one-port network composed entirely of linear two-terminal
elements with resistances rij. The variation of the effective
network resistance R with the variation of the resistance rij is
given by

�R

�rij
= � iij

I
�2

, �4�

where iij and I are, respectively, the current passing through
the individual resistance rij and the one-port network. No
particular assumption is made on the expression of the
resistances rij for the derivation of this result �indeed, the
theorem is still valid for complex impedances�. Conservation
of flow and energy only are required. Thus, Cohn’s theorem
can be applied to a broader class of linear flow-in-network
situations.

III. OPTIMAL SHAPE OF CHANNELS

We first notice that in order for the effective network re-
sistance to be at its minimum value with respect to the con-
straint Cn, each channel must be straight with a uniform
cross-sectional area �i.e., sij�l�=sij�. Indeed, any small
change in pipe cross-sectional area or pipe length from the
minimal resistance configuration—compatible with the
constraint—must lead to an increase of the resistance R.
Consider, in particular, such changes on a single channel
�i , j�, so that only the individual resistance rij is likely to
change. According to Eq. �4�, the effective network resis-
tance R is a monotone function of the individual resistance
rij. Thus, in a minimal resistance configuration, any small
shape variation of the channel �i , j� leaving Cn �and so
	0

lijsij
n dl� unchanged must necessarily lead to an increase of

rij. Considering the definition �2� of rij, this means that the
channel length lij must be as small as possible and its cross-
sectional area uniform and as large as possible. Since the
reasoning can be applied indifferently to any channel of the
network, we thus conclude that each one of them must be
straight with a uniform cross-sectional area.

Besides, it can be noticed that a circular cross-sectional
area has the specific property of minimizing both the pipe
surface area for a fixed volume �or equivalently maximizing

the pipe volume for a fixed surface area� and the dissipative
energy in the channel for a fixed incoming flow-rate in case
of Poiseuille-flow regime.

IV. RELATIONS BETWEEN DIAMETERS: GENERALIZED
MURRAY’S LAW

We now establish relations between diameters and angles
in an optimal network, for a fixed topology �meaning that no
junction or channel can be added or removed from the net-
work, but the channel lengths and cross-section areas are free
to vary�. In such a network, channels are straight with uni-
form cross-sectional areas, as we just showed in the section
above. Then, for a given topology, the network architecture
is entirely determined by the knowledge of the independent
variables 
sij� and 
ri= �xi ,yi ,zi��, respectively, the channel
cross-sectional areas and junction positions. However, for a
fixed value of Cn, these variables cannot vary independently
anymore. Therefore, we shall use the Lagrange multiplier

technique and try to minimize the function R̃=R+�Cn
�where � is a Lagrange multiplier� with respect to the vari-
ables 
sij ,ri= �xi ,yi ,zi��, which are considered as indepen-
dent. Using Cohn’s theorem �4�, the condition of extremum

with respect to the cross-sectional areas ��R̃ /�sij =0� gives

� iij

I
�2

=
�

�

n

m
sij

m+n, �5�

where iij is the flow rate passing through the channel �i , j�.
Furthermore, conservation of the flow rate at each junction
i �� jiij =0� implies

�
j

sgn�iij�sij
�m+n�/2 = 0. �6�

This relation, illustrated on Fig. 1 and valid for nettedlike as
for treelike networks, is a generalization of Murray’s law
�12� to any flow profile and with different constraints
�Murray’s law was originally derived for the particular case
m=2,n=1�. Moreover, we must point out that relation �6�
results here from the global optimization of the network
structure, while the original derivation of Murray’s law was
based on a local optimization �flow and channel cross-
sectional area were functionally related: an optimal cross-
sectional area was found for a given flow and not for all
levels of total flow�.

FIG. 1. �Color online� Relation between cross-sectional areas of
adjoining channels in a minimal resistance network. This relation is
a generalization of Murray’s law.
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V. BRANCHING GEOMETRY

The condition of the extremum with respect to the junc-

tion positions ��R̃ /�ri=0� and cross-sectional areas �Eq. �5��
simultaneously leads to the following vectorial equality at
each node i:

�
j

sij
n eij = 0 , �7�

where eij is the outward-pointing unit vector along the chan-
nel �i , j� �see Fig. 2�. This equality, relating angles between
adjoining channels to their cross-sectional areas, is similar to
a force balance equation, where the weight of the force act-
ing along the channel �i , j� is directly proportional to sij

n . As
for Murray’s law, local optimization principles have already
been proposed in order to describe the geometry of nodes in
natural networks, namely: minimization of channel volume
�V�, channel surface area �S�, dissipated power �P�, and drag
force �D� on the walls �3,13,14�. All these approaches consist
in varying the position of a given junction, while the posi-
tions of the other junctions, the network topology, the chan-
nel cross-sectional areas, and the flow rates through every
channel remained fixed. However, in the context of a global
optimization, a change in a node position should alter the
flow-rate distribution, and it is, therefore, to be expected that
global minimization of the dissipated energy leads to a dif-
ferent optimal geometry of nodes than in the local optimiza-
tion context P. Indeed, the optimal geometry of nodes de-
scribed by Eq. �7� is similar to the one obtained for S �when
n=1/2� or V �when n=1�, but different from P �3,13,14�.

VI. SCALING LAW BETWEEN RESISTANCE AND
CONSTRAINT VALUES

A relation between the minimal resistance value and the
constraint value can be established, using Eq. �5� and con-
servation of energy:

R = �
�i,j�

rij� iij

I
�2

= �
n

m
Cn. �8�

�note that we do not use Eq. �7� to derive this relation: opti-
mization with respect to junction positions is not required for
Eq. �8� to be valid�. On the other hand, a classical result of
optimization theory relates the Lagrange multiplier to the

change of the minimal resistance with respect to the con-
straint value: �=−dR /dCn �note that Eq. �8� implies ��0�.
Therefore, the resistance of an optimal network is found to
scale as Cn

−m/n, i.e.,

R = �l� l

Cn
�m/n

, �9�

where l is a parameter with dimension of length, depending
solely on the network topology, the positions of sources and
wells, and the values of m and n.

We have shown that a minimal resistance configuration,
for a given topology, if it does exist, must satisfy Eqs. �5�,
�6�, �7�, and �9�. Whether the extrema characterized by this
set of equations are minima or maxima is not clear �although
this uncertainty might be dispelled by some convexity argu-
ment�. Nevertheless, because individual resistances have fi-
nite values, there must exist at least one configuration with
global minimal resistance �but we do not know if this con-
figuration is unique� �21�.

VII. NODE CONNECTIVITY IN BIDIMENSIONAL
NETWORKS

The results derived in the previous sections are valid for
both bidimensional and three-dimensional networks. As a fi-
nal result, we now establish an upper bound on the number
of adjoining channels at each junction of a bidimensional
minimal resistance network. To do so, we look at a given
junction of N channels and determine when this junction is
preferentially replaced with two junctions, respectively, of
three and N−1 channels. Suppose we create a new channel
with infinitesimal length dl3, splitting the N-fold junction to a
�N−1�-fold junction plus a threefold junction, as depicted in
Fig. 3. Then, the length variation of the two other channels
joining in the new threefold junction are dl1=−dl3 cos �1 and
dl2=−dl3 cos �2, with �1+�2=�, where � is the angle be-
tween these two adjacent channels. The variation of the as-
sociated resistances are, respectively, dr1=−�dl3 cos �1 /s1

m,
dr2=−�dl3 cos �2 /s2

m, and dr3=�dl3 /s3
m, where s1, s2, and s3

are the respective channel cross-sectional areas. Moreover,
this transformation must preserve the value of Cn, so the new
channel cross-sectional area s3 must satisfy

s3
n = s1

n cos �1 + s2
n cos �2. �10�

Using once again Cohn’s theorem, we obtain the variation of
the effective resistance

FIG. 2. �Color online� Relation between angles and cross-
sectional areas of adjoining channels in a minimal resistance net-
work. This relation is similar to a force balance equation describing
the equilibrium of strings tied together and under respective ten-
sions, or weights, sij

n .

FIG. 3. �Color online� Elementary transformation of a N-fold
junction to a �N−1�-fold junction plus a threefold junction. A new
channel, with infinitesimal length dl3 is thus created.
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dR = �
dl3

I2 � i3
2

s3
m −

i1
2 cos �1

s1
m −

i2
2 cos �2

s2
m � . �11�

Suppose now that the N-fold junction was in a minimal re-
sistance configuration. Then, conditions �5� and �7� must be
fulfilled, and we can replace i1

2 and i2
2 in Eq. �11� by their

expressions �Eq. �5��. Moreover, conservation of flow rate
relates i3 to i1 and i2: i3=−i1− i2. Using Eq. �10�, we see that
the resistance variation dR is negative when s3

�m+n�/2

�s1
�m+n�/2±s2

�m+n�/2. The sign in the right-hand side of this
inequality is positive when the two adjacent channels are
crossed by flows in same direction and negative when they
are crossed by flows in opposite directions. The former
inequality can be rewritten as cos �1+rn cos �2
� �1±r�m+n�/2�2n/�m+n�, with r=s2 /s1. Before establishing an
upper bound on the node connectivity, we must notice the
following “rules” on the geometry of junctions in optimal
networks:

�1� There is at least one angle lower than 2� /N between
two adjacent channels in a N-fold junction �from geometrical
consideration�.

�2� There is at least one pair of adjacent channels crossed
by flows in opposite directions �from flow conservation�.

�3� The angle between two adjacent channels is always
lower than � �from Eq. �7��.

Let us choose �1 and �2 such that sin �1=rn sin �2, which
corresponds to the maximum value of the left-hand side of
the former equality. Since �	� �rule 3�, we easily check
that both �1 and �2 are positive and lower than � /2, and
simple algebra leads to

cos �1 + rn cos �2 = �1 + r2n + 2rn cos � . �12�

Thus, the resistance variation dR is negative if and only if

cos � � f±�r� =
�1 ± r�m+n�/2�4n/�m+n� − 1 − r2n

2rn , �13�

where the functions f+�r� and f−�r� correspond to the respec-
tive situations of two adjacent channels crossed by flows in
the same and opposite directions. The analysis of f+�r� and
f−�r� shows that, for any value of r, these functions are
bounded in the following way:

f+�r� 	 2�3n−m�/�m+n� − 1 for any value of m and n , �14�

f−�r� 	  0 if m 
 n

− 1 if m = n .
� �15�

So if � is lower than �+=arccos�2�3n−m�/�m+n�−1� for the first
situation, or �−=90° �if m
n� or 180° �if m=n� for the
second situation, we are ensured that the resistance variation
is negative. Let us inspect the different situations.

�i� If m=2 and n=1/2: �+�97.4° ,�−=90°. We know
there is at least one angle lower than 360° /N between two
adjacent channels in a N-fold junction �rule 1�. By choosing
this angle as � in the analysis above, we conclude that a
N-fold junction is preferably replaced with a �N−1�-fold
junction plus a threefold junction, as long as N�4. The new
structure is not in a minimal resistance configuration, deter-

mined by Eqs. �5� and �7�, so the “relaxation” of the new
structure to such a configuration implies a further decrease of
the effective resistance. Eventually, we can repeat the same
reasoning on the �N−1�-fold junction, if N−1�4. We come
to the conclusion that exactly three channels meet at each
junction in such an optimal network.

�ii� If m=2 and n=1, or m=1 and n=1/2:
�+�74.9° ,�−=90°. Following the same argument, we con-
clude that a N-fold junction is preferably replaced with a
�N−1�-fold junction plus a threefold junction as long as
N�5. Thus, no more than four channels meet in one junc-
tion in such an optimized network. Furthermore, it can be
noticed that only two kinds of fourfold junctions can exist in
such a network: either three adjacent channels are crossed by
flows of same sign �and the last flow is of opposite sign�, or
two adjacent channels are crossed by flows with same sign
and the two other adjacent channels are crossed by flows
with same opposite sign; a fourfold junction with channels
crossed by flows with alternate signs is preferably replaced
with two threefold junctions, since there always are two ad-
jacent channels crossed by flows with opposite signs and
with an angle lower than 90° �rule 1�.

�iii� If m=1 and n=1: �+=0° ,�−=180°. But we know
that there are always two adjacent channels crossed by flows
with opposite signs in a N-fold junction �rule 2�, with an
angle between them lower than 180° 
�rule 3�. So the N-fold
junction is preferably replaced with a �N−1�-fold junction
plus a threefold junction for N�4. Now, if we let the new
structure of the network “relax” to a minimal resistance con-
figuration, it must simultaneously satisfy Eqs. �6� and �7� at
every junction and, particularly, at the threefold junction. But
this set of equations applied in a threefold junction has only
trivial solutions when m	n: either one cross-section is null,
or the three channels are colinears. We conclude that sources
are directly connected to wells, with no intermediate junc-
tion, in a minimal resistance network preserving total chan-
nel volume and in case of plug-flow regime.

It is worth noticing that the same reasoning may be used
on the total channel length variation instead of resistance
variation �Steiner tree problem�. In that case, we obtain that
links meet at threefold junctions �with equal angles of 120°�
in a length-minimizing network. On the contrary, the exten-
sion of the analysis to three-dimensional minimal resistance
networks is much more complex and still needs to be
achieved.

VIII. COMPARISON WITH NATURAL NETWORKS

All the results derived in previous sections �relations �5�,
�6�, �7�, and �9� as well as the upper bound on the node
connectivity� are consequences of global optimization. How-
ever, these results have been established by studying any
local perturbation of the structure. Such local adaptive pro-
cesses may take place during ontogeny of natural networks.
Therefore, it may be of interest to compare the structure of
some natural networks with the results presented in this
work. Indeed, it has been already shown in various publica-
tions �22,23� that Murray’s law is well satisfied in some ap-
propriate portions of human and animal vascular systems. In
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that case, the flow profile is nearly Poiseuille-like �m=2� and
the relevant constraint is a fixed total channel volume
�n=1� �22,23�. Validity of Murray’s law for vascular system
of plants is more controversial �23–26�, mostly because of
the underlying theoretical assumptions in the original deriva-
tion of Murray’s law and of the particular structure of veins
in vascular system of plants. Nevertheless, experimental data
suggest that a relation � jsgn�iij�sij

�/2=0 is still verified, with �
between 2.49 and 3 �15,26–28�. Let us look more precisely
at the bidimensional leaf venation network, like the one re-
ported on Fig. 4. Leaf veins are actually vascular bundles
�29�, supporting two parallel flows: a pressure-driven flow of
water and minerals from petiole to stomata through xylem
tissues, and a diffusive flow of nutrients and photosynthesis
products in the opposite direction through phloem tissues. So
petiole �or major vein� and stomata play alternatively roles of
sources and wells for the leaf. An outer layer of cells, called
the bundle sheath, surrounds the vascular tissues. Although
this layer is not fully impermeable, the leaky radial flow is
small when compared with the axial flow, except for the
minor veins �24,30�. For these veins, leakage is very impor-
tant and the pressure field and nutrient concentration nearby
are almost uniform. Kull and Herbig �31� investigated on
leaf topology of several species. They observed that leaf ve-
nations preferably show trivalent nodes with six neighbors
and noticed that this geometry is typical of self-generating
structures like bubble floats. Besides, in a recent study, Bohn
et al. �32� analyzed the geometry of junctions in the leaf
venation of various species. They observed that angles be-
tween veins are very well defined and that a vectorial balance
equation comparable to Eq. �7� can be established, where the
weight of each vector is directly proportional to the vein
radius. A comparison of Bohn et al. observations with our
optimization principles suggests then that structure of leaf
venation corresponds to a minimization of the resistance for
a fixed total channel surface area �i.e., n=1/2� or, equiva-
lently, to the minimization of the total surface area for a fixed
value of the resistance. This result is coherent with the idea
of a predominant building cost of the bundle sheath cells
over those of the vascular tissues �24,26�. Taking n=1/2 and
comparing Eq. �6� with experimental studies of Murray’s law
leads to a value of m between 1.99 and 2.5, which suggests

that flow in leaf veins is nearly Poiseuille-like. Note, we
assumed in the theory that all channels have same resistivity
� �Eq. �1��. However, density of xylem and phloem tissues in
a leaf vein might be a function of the vein diameter as well.
This variation of the resistivity is then included in the coef-
ficient m, which might explain the small discrepancy ob-
served between the experimental and theoretical values of m
for a Poiseuille-flow regime. Furthermore, the quasiexclusive
presence of trivalent nodes in leaf venation reinforces the
idea that leaf venations of various plants form minimal resis-

TABLE I. Dimensionless resistances ��R /�a��Cn /a�m/n� corre-
sponding to the four configurations depicted on Fig. 5. For configu-

rations 3 and 4, l1= l1 /a and l̂2= l2 /a are the dimensionless lengths
of the two kinds of channels.

Configuration R

�a �Cn

a �m/n

1 2�m−n�/n

2 2�m−n�/n�1 + �b

a
�2��m+n�/n

3
l̂1�4l̂1 + 2l̂2

b/a − l̂2
�1 + �b/a − l̂2�2

�m/n

,

with l̂1 =
�1 + �b/a − l̂2�2

2

4 �4l̂1 + l̂2
1 − l̂2

l̂1
�m/n�l̂1 + l̂2� l̂1

1 − l̂2
�m/n�,

with l̂1= ��b /a�2+ �1− l̂2�2� 2

FIG. 4. Portion of leaf venation. In most species, the structure is
nettedlike, and veins meet in threefold junctions.

FIG. 5. Four different network configurations linking two
sources to two wells, placed at the corners of a rectangle of length
a and b.
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tance networks preserving the total surface area with a nearly
Poiseuille-flow regime. The measure of the scaling law be-
tween the hydraulic resistance and the total channel volume
or surface area might be an additional way to test this con-
jecture. However, it is rather unlikely that a single principle
might lead to the large variety of different venation patterns
observed with species. Indeed, other physical explanations
are also proposed to explain the regularity of leaf venation
patterns �24,33�.

APPENDIX: A SIMPLE EXAMPLE

We illustrate our results with a simple example: two
sources and two wells placed at the corner of a rectangle, as
depicted on Fig. 5. Four configurations are analyzed. In con-
figuration 1, sources are directly connected to wells, without
any intermediate junction. In configuration 2, sources are
connected to wells via a fourfold intermediate junction. In
configurations 3 and 4, sources and wells are connected
through two threefold junctions, their positions being chosen
such that equality �7� is satisfied. The dimensionless resis-

tance �R /�a��Cn /a��m+n�/n of each configuration is reported in
Table I. From these expressions, we note the following ob-
servations, in agreement with our results: First, we notice
that R scales as �1/Cn�m/n. Second, when m=n�=1�, configu-
ration 1 is the smallest resistance configuration, for any value
of the aspect ratio b /a. Third, resistance of configuration 3 is
always lower than resistance of configuration 2 and higher
than resistance of configuration 1 �R1	R3	R2�, for any
value of m, n, and b /a. Fourth, resistance of configuration 4
is lower than resistance of configuration 2 as soon as
�1+ �b /a�2	22�m−n�/�m+n�, for any value of m, n, and b /a.
One can easily check that this criterion on the aspect ratio
b /a �for given values of m and n� corresponds to the condi-
tion for Eq. �6� to be simultaneously satisfied with Eq. �7� at
each threefold junction of configuration 4. In particular, re-
sistance of configuration 4 cannot be lower than resistance of
configuration 2, when m=n, which is in agreement with the
second point. Fifth, when m
n, resistance of configuration 4
can be lower than resistance of configuration 1 for a suffi-
ciently low value of b /a.
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